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Abstract--This work proposes a cascade model approach to describe two-phase turbulent flows of 
neutrally buoyant liquid dispersions for high dispersed phase fractions. A continuum framework is selected 
for the representation of the mean flow momentum and continuity equations. The cascade model of 
Desnyansky & Novikov is extended to describe the energy spectrum and eddy intermittency in the presence 
of a dispersed phase. The Reynolds stress in the mean balance equation is related to the cascade variables 
by a spectral eddy viscosity model. A population balance is formulated for each eddy size. This approach 
permits the specification of the immediate environment of the drop processes modeled in the population 
balance. Specific drop-eddy events such as grazing collisions, drop entrapment and eddy shattering are 
suggested and their effects on the turbulent energy spectrum, eddy intermittencies and drop size 
distributions are examined. The energy, interminency and population balance equations modified to 
include the effects of drop-eddy interactions form the proposed two-phase cascade model for homo- 
geneous, neutrally buoyant, turbulent dispersions. 

Key Words: cascade model, two-phase turbulence, two-phase flow, homogeneous turbulence, turbulent 
dispersions 

1. I N T R O D U C T I O N  

I. 1. Two-phase  turbulence 

The droplet processes of breakage and coalescence, and the accompanying transport phenomena 
involving chemical reaction, are strongly coupled with the continuous phase hydrodynamics. The 
difficulties in making accurate predictions of turbulence statistics are compounded by the effect of 
the suspension on the flow. The complexity of these two-phase flows has given rise to various 
modeling approaches which include one-way coupling and two-way coupling models. 

One-way coupling assumes that the continuous phase turbulence is unaffected by the droplets 
as presented by Shuen et  al. (1983), Peskin & Kau (1979), Smith (1985) and Yuu et al. (1978). 
Although one-way coupling models are applicable under certain asymptotic conditions, the present 
study concerns flows with large phase fractions, for which these models are inadequate. 

Formulations which account for the mutual coupling between the continuous and dispersed 
phases are known as two-way coupling models. When dealing with densely loaded flows, a model 
with this level of sophistication is usually necessary. These formulations can be classified into two 
categories: (1) tracking models and (2) continuum approaches. Earlier two-way coupling tracking 
models reported include the PSI-CELL (Crowe 1980; Crowe et al. 1977; Crowe & Pratt 1972; 
Boysan et al. 1982; Gosman & Ioannides 1981). Various extensions to these models allow ease of 
computations to track large numbers of particles (Dukowicz 1980; Kuo 1981; Kuo & Bracco 1982; 
O'Rourke 1981). As an alternative to the tracking methods, some investigators choose to treat 
multiphase mixtures as overlapping continua (Truesdell & Toupin 1960; Eringen 1976). Equations 
for a single "average material" with internal structure are formulated by Bedford & Drumheller 
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(1983) and microstructural parameters are introduced to complete the description. A complete 
treatment is presented by Dobran (1985). A multiphase mixture can also be modeled by the 
treatment of each phase as a distinct fluid (Dopazo 1977; Chen 1983). A summary of two-fluid 
models is reported by Drew (1983). Subsequently, two-phase, k--e, models have been developed to 
effect closure (Chen 1983; Chen & Wood 1985; Chen & Wood 1986; Elghobashi & Abou-Arab 
1983). 

Rietema & van den Akker (1983) use the control volume concept to develop generalized mean 
equations for the two-fluid approach. The momentum equations for the two phases are: 

~b dU~ pc-~-  = ¢ v .  T~+ V-Ro + ¢pcK + fc [11 

d U  d 
(1 - th)pd ~-~- = (1 -- q~)V" Td + V'Rd + (1 - ~b)pdb d + fd [21 

where q) is the volumetric phase fraction, p is the density, U is the mean velocity vector, T is the 
viscous stress tensor, R is the Reynolds stress tensor, b is the body force vector, f the interphase 
interaction force vector and the subscripts c and d refer to the continuous and dispersed phase. 
From left to right, the individual terms in [1] and [2] represent inertia, the viscous stress, the 
Reynolds stress, the body force and the interphase interaction force, respectively. Models for the 
Reynolds stress and the interphase interaction force must be devised in order to complete the 
description. 

In summary, one-way coupling models are inadequate for dense dispersions; tracking models are 
intractable for large numbers of particles; while one-fluid and two-fluid models require adequate 
constitutive relations. In this study, the primary motivation is the modeling of dense liquid-liquid 
systems of many drops. Individual particle trajectories are not considered important. Hence, 
one-fluid and two-fluid approaches seem most suitable. Often, in agitated liquid-liquid dispersions, 
the system is nearly neutrally buoyant, and hence, the mean relative velocity between the two phases 
is small. It is then unnecessary to solve the particle momentum equation. In addition, the interphase 
interaction force, f¢, in [1] can be neglected. In this case, the one-fluid and two-fluid models take 
on a very similar form, and only the Reynolds stress term needs to be modeled. 

1.2. Turbulence  model ing 

In order to complete the multifluid representation, a suitable framework for the 
determination of the Reynolds stress must be established. In the k-E model, the turbulent 
eddy viscosity is defined by: 

k 2 
vt = C , -  [3] 

where C~ is a constant, k is the kinetic energy and E is the turbulent energy dissipation rate. 
Two-equation multiphase models such as those of Chen (1983) and Elghobashi & Abou-Arab 
(1983) are generally unsuitable for dense dispersions because accurate modeling of the numerous 
cross-correlation terms, many of which are negligible in dilute dispersions, is difficult. Our approach 
considers the cascade model for homogeneous turbulence by Desnyansky & Novikov (1974) which 
exhibits the potential for the calculation of corrected values of k and e. The advantage of this 
formulation is that no additional equations are needed for the energy dissipation rate. The eddy 
viscosity is then calculated on the basis of the classical model of Heisenberg (see Hinze 1975). 

The energy cascade model expresses the spectral transfer of energy from large to small scales 
in discrete form. u2/2 represents the average kinetic energy per unit mass of eddies of size l ike, 
and the conservation equations (Desnyansky & Novikov 1974), in the absence of external forcing, 
a r e  

du--J~ = otk,[(u~ , - 2u,+t u,) - 2~/3C(u, , u , -  2u~+ ,)1 - vk2u, [41 
d l  

(I) (II) (III) 
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where ui is the instantaneous fluctuating component of velocity of the ith eddy, ~ is a 
proportionality constant, ki is the wave number of the ith eddy, C is the reverse spectral transfer 
coefficient and v is the kinematic viscosity. Here (I) represents direct spectral transfer, (II) represents 
reverse spectral transfer and (III) represents viscous dissipation. The constant C measures the 
relative importance of reverse to direct transfer and has been assigned a value of 0.4 for decaying 
homogeneous turbulence in agreement with the range recommended by Bell & Nelkin (1978). In 
non-homogeneous flows and in the presence of a second phase, [4] must be modified to account 
for the spatial changes in the energy spectrum. 

The advantages of the cascade model over conventional methods are several. The unique feature 
is that the entire energy spectrum is considered. A framework is provided within which drop-drop 
interactions can be examined while accounting for the local turbulent environment and not 
limiting the scale of interactions to properties of "typical" eddy sizes such as the inertial or 
energy-containing eddies. A second feature is that interphase interactions can be quantified by 
examination of the fundamental physical processes which occur on d r o p ~ d d y  contact. There is 
no need for the interpretation of cross-correlation terms which appear in two-phase (k-e) models 
(Chen 1983; Elghobashi & Abou-Arab 1983). A third feature is that dense dispersions can be 
described. For these reasons, a two-phase cascade model is proposed and developed in section 2. 

1.3. lntermittency 

The number of n eddies to be used in the two-phase cascade model is determined from the 
intermittency factor, ft,, which is defined as the fraction of space occupied by active n eddies 
(Lewalle et al. 1987), in conjunction with the eddy size. By this definition, the energy density (v~/2) 
is related to ft, and the cascade characteristic velocity, u,, by 

2 2 v .  = u . / /~ . .  [5] 

Here v. is a measure of the absolute velocities prevalent at wavenumber k., and is the relevant 
velocity parameter which describes the kinetic energy of collision of entrained objects. In order to 
complete the formulation, an expression for ft. suitable for multiphase flows is required. 

The intermittency of turbulence in single-phase flows has been examined in several different 
studies (Frisch et al. 1978; Fujisaka & Mori 1979; Hentschel & Procaccia 1982; Mandelbrot 1976). 
The model of Frisch et al. (1978) expresses the relationship between ft. and ft._ ~ at steady state, 
as follows: 

ft. = fl .-i  2 ° -  3. [6] 

The similarity exponent, D, is determined experimentally. All studies agree on a value of 2.6 _+ 0.1 
for D. Lewalle et al. (1987) postulated that, in homogeneous single-phase unsteady flows, the 
intermittency spectrum tends to the self-similar distribution described by [6], with a time scale which 
is related to the local turbulence parameters, v. and k.. This assumption yields the following model 
equation for the transient intermittency: 

d 
dt (log ft.) = - v .  k. (log ft. - log(ft. _, 2 ° -3)). [7] 

Equation [7] is unlikely to hold when droplets interfere with the normal distribution of eddies. 
Therefore, additional terms to account for droplets must be introduced. These modifications are 
discussed later in this paper. Equations [4] and [7] form the foundation for the two-phase cascade 
model. 

1.4. Drop population balance 

In addition to the eddy population, it is necessary to follow the evolution of the drop population. 
If  the droplet size is the only internal coordinate, the general form of the drop population balance 
for physically equilibrated, isothermal systems (Smith 1985) is 

L rd, t)} + -~-~__ {U,(X, t )N( t ) f (x ,  rd, t)} = N(t)h(x ,  rd, t) [8] {N(t) f (x ,  
Ot uxi 
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N( t )  represents the total number of drops in the system, f (x ,  r a, t) is the transient probability 
density function, x is the vector of external coordinates, rd is the drop radius, ui(x, t) is the drop 
velocity vector and h(x, ra, t) represents all source and sink terms for droplets in the control 
volume. 

Conventionally (Valentas & Amundson 1966), droplet breakup is described by three functions: 
(1) v(v), the average number of droplets formed from a breaking drop of volume v; (2) fi(v', v), 
the daughter droplet size probability density function produced by a parent of volume v; and (3) 
g(v), the frequency of breakage of a drop of volume v. Drop coalescence is expressed in terms of 
two functions: (1) h(v, v'), the frequency collisions between drops of sizes v and v' and (2) 2(v, v'), 
the coalescence efficiency of collisions between drops of sizes v and v'. Expressed in terms of these 
functions, the spatially homogeneous population balance equation with no feed and exit events is 

3N(v, t ) f,",,, f0 ',2 O ~  - g(v)N(v,  t) + v(v')~(v, v ' )g(v ' )N(v ' ,  t) dr '  + 2(v - v', v')h(v - v', v') 

f 
(tma x v) 

x N(v  - v', t )N(v ' ,  t) dr '  - N(v, t) 2(v, v')h(v, v ' )N(v ' ,  t) dr ' .  [9] 
do 

N(v, t) is henceforth referred to as the number density, and is the product of N(t )  and f (rd,  t). 
Several studies (Clark 1988a, b; Lagisetty et al. 1986; Koshy et al. 1988) have examined drop 

breakup in turbulent flow. Clark (1988a) developed a dynamic model for the breakage of droplets 
larger than the Kolmogorov microscale. 

Lagisetty et al. (1986) proposes a model for drop breakage in which the deformation of the drop 
is represented by a Voigt element. Koshi et al. (1988) extended this framework to account for 
surfactants by the inclusion of an extra stress in the stress balance. 

The approach used in this study is based on the models of Coulaloglou & Tavlarides (1977). The 
breakage frequency of drops is calculated as a product of the fraction of drops breaking, and the 
breakage time. The former is modeled by determination of the fraction of drops with turbulent 
kinetic energy greater than the drop surface energy. The latter is determined by analogy with the 
separation of two lumps of fluid in a turbulent flow. The relative motion of the potential daughter 
droplets is assumed similar to that of the two lumps. The breakage frequency is therefore expressed 
as (Bapat & Tavlarides 1985): 

c,,,,,a [ qo-(1,_+ 
g ( v ) = ( l  +q~)v2/9ex p fld(23U5, 9 j [10]  

where CI and C2 are constants, v is the drop volume and a is the interfacial tension. 
The daughter droplet distribution function is assumed to be Gaussian (Coulaloglou & Tavlarides 

1977), and only binary breakage is considered. Therefore 

and 

~(v, v') = ~fl  exp[ - -4 .5  (2v - v')2] [111 

v(v) = 2. [12] 

Droplet collision is modeled by assuming that the process is similar to the collision of gas 
molecules, as in the kinetic theory of gases. Then the collision frequency is expressed as 
(Coulaloglou & Tavlarides 1977). 

h(v,, v2) = C3(vP + v~/a)(a~ + a~)'/2/(1 + ¢)  [13] 

where Ca is a constant. In the model of Coulaloglou & Tavlarides (1977), t/~ and ~/~ are the mean 
squared velocities of drops with volumes vl and v2 and are given in terms of the average turbulence 
properties as 

-2 /~ 2/3,2'3 [14] 

where k~ is a constant. The coalescence efficiency of droplet collisions is modeled by estimating 
the fraction of binary drop collisions which result in coalescence. By assuming that the rate 
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determining step is the time needed for the intervening film between the drops to drain to a critical 
thickness and that the compressive force along the lines of centers of the two drops, which cause 
the film drainage, is a result of  the isotropic turbulent motion of eddies, the coalescence efficiency 
can be written as 

F C'/'LcReE F V I / 3 ~ 1 ] 3  14] [15] 
("" = exp ¥ v--]/~J J 

where #c is the viscosity of the continuous phase and C4 is a constant. These functions can be used 
to describe droplet-eddy interactions as shown below. 

2. THE TWO-PHASE CASCADE MODEL 

In order to describe the flow of two phases, [4], [7] and [9] must be corrected to account for 
interphase interactions. It is presumed that the structure of the terms already present in the 
equations is not changed by these interactions although their numerical value will be different. 
The presence of the dispersion is reflected through additional dissipative terms introduced into the 
energy budget, and via source and sink terms added to the intermittency and population balance 
equations. The general form of the two-phase cascade model is therefore 

du, 
d---[ (t  ) = otk, [u]_ l - 2 u ,  +1 u , -  21/3C(un- l U n -  2u2 + l ) ] q  - -  v k ~  u n q- {drop-eddy interactions) [16] 

dfl--2 = ft, v, k, [log ft, - log(ft,_ 12 ° -  3)] + {drop_eddy interactions} [17] 
dt 

where k, are discretized wave numbers. 
Since the mutual interactions between eddies and drops are likely to depend on the local 

environment, a more accurate description can be expected if a separate homogeneous drop 
population balance is written for each eddy size rather than for the cumulative statistics over all 
sizes. The advantage of the approach is two-fold. First, the drop population is distributed over the 
entire population of eddies, and its evolution therefore reflects interactions with the whole 
spectrum. Second, the drop size distribution and phase fraction could differ substantially between 
eddy sizes. The cascade framework permits the description of the effect of these quantities on the 
local energy spectrum and drop dynamics. 

Accordingly, [9] is modified to represent the local population balance. The subscript 'n '  is affixed 
to the number density N(v ,  t),  the maximum drop volume v . . . .  and the droplet functions g(v ) ,  
fl(v, v') ,  v(v), 2(v, v') and h(v,  v') ,  to indicate that they represent quantities or functions local to 
eddy size n. 

I(vmax). 
ON. (v, t)  = - g . ( v ) N . ( v ,  t)  + v . (v ' ) f l . (v ,  v ' ) g . ( v ' ) N . ( v ' ,  t )  dr" 
at j~, 

I 
v~2 

+ 2.(v -- v ' ,  v ' )h . (v  - v ' ,  v ' ) N . ( v  - v ' ,  t ) N . ( v ' ,  t)  d r '  
do f ~t'max )n -- t, 

- N . (v ,  t)  2.(v, v ' )h . (v ,  v ' )N~(v ' ,  t )  dv '  + {drop-eddy interactions}. [18] 

The initial conditions for [16], [17] and [18] are prescribed as 

0. u.(O) = u . ,  ft.(O) = f l ° ;  N . (v ,  O) = N°(v); n = 1 . . . . .  N. [19] 

The {droI~eddy interaction} terms in [16]-[18] will be constructed in the following sections. 

2.1. Turbulence structure 

In the derivation of the energy cascade equations, it was observed that interactions between 
length scales were strongest when the associated time scales were comparable. This concept laid 
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the foundation for the assumption that the energy equation associated with the length 
scale " n "  is coupled only to the energy equations of its "nearest neighbors", scales " n -  1" 
and "n + 1". In other words, "n eddies" were presumed to exchange energy only with "(n + 1) 
eddies", " ( n -  1) eddies", and other "n eddies", because their time scales matched. Thus, 
a snapshot of a collection of eddies would show "(n + 1) eddies" embedded primarily in "n eddies", 
"n eddies" in "(n - 1) eddies", and so on. Neglecting all but nearest neighbor interactions is then 
tantamount to assuming that eddies of an arbitrary size class " n "  embed ONLY "(n + 1) eddies". 
Of course, the largest eddies must then fill the flow, and the smallest must contain no fluctuations 
at all. The idealized picture depicted in figure 1 was employed by Lewalle et al. (1987). It may be 
observed that an "(n - 1) eddy" may include several fluctuations, all of which fall within the size 
class "n" .  

The idealization of the eddy structure made in the preceding paragraph is merely an 
extension of the assumption of nearest neighbor interactions. It is also consistent with the 
picture of the eddy population to presume that a drop in an "n eddy" encounters only other 
species (drops or eddies) in the same eddy. Since all embedded eddies are of size class "n + 1", 
the possible collision combinations are reduced substantially. The collision parameters are 
well defined, and the problem is transformed into a more tractable one. The formulation also 
specifies the environment of drop-drop encounters in "n eddies" to be the prevailing state of the 
"n eddy". 

Although the hypothesis of successively contained eddies appears attractive, it must be 
employed with caution. For example, in the vicinity of a wall, the large eddy length scale 
changes rapidly as the wall is approached. The dispersion could then exist outside of the large 
eddies, thus violating the model assumption that eddies fill the space. Under these conditions, 
the hypothesis of successively contained eddies must surely break down. In fact, it is possible to 
construct a variety of configurations in which a more elaborate eddy structure is needed for a 
realistic description. 

2.2. Collision frequencies 

In order to quantify interphase and intraphase interactions, the drol~eddy and drop-drop 
collision frequencies in a specified local turbulence environment must be estimated. Coulaloglou 
& Tavlarides (1977) assume that the mechanism of collision in a locally isotropic flow field 
resembles that of molecules in the kinetic theory of gases. The collision rate is then calculated by 
estimating the mean square fluctuating velocities of drops in terms of the drop size and mean rate 
of turbulent energy dissipation. A similar model is constructed in the two-phase cascade. 

E -I 

Bn 
En.+ 

En 

/3 n+l 

UNIT VOLUME 

Figure 1. Idealized eddy structure. 
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If NE and ND represent the number of objects of each type that partake in the collision, 
the number of collisions experienced per unit time in volume V assuming random collisions is 
given by 

r~(rd + Re)  2 
ZE -- V VrNEND' [20] 

where r a and Re are the radii of the spherical colliding objects, and vr is their relative velocity. The 
number of drops in the size range [v, v + dr] per unit volume of dispersion is N ( v )  dr, and the 
number of eddies of size n with radius of l, is (fl,/((4~/3)12)). Therefore, 

ZE=7~(rd(V)+ I.)2VrN( v)(3fl:~ dv, [21] 
\ 4 ~ t ; /  

and the collision frequency is 

f ( n , v ) = ~ ( r d ( v ) +  l , ) 2 v , ( ~ ) .  [22] 

In agreement with the simplified turbulence structure discussed in section 2.1, all species residing 
within a parent of size n move randomly with a characteristic speed v,. The available volume V 
in the parent eddy per unit volume of the dispersion is taken to be ft, and the average relative 
velocity vr is found by integrating over all possible collision angles. Hence, 

v ,= 2V, Sln ~ ~sin0 d 0 = - ~ - .  [23] 
dO 

In the successively contained scheme, the collision frequency is therefore 

K4 v, (ra (v) + I, +, )2ft, +, [24] 
f ( n  + 1, v) = 3 

l,+ ~fl, 

where K4 is a constant. 
As pointed out by Lewalle et al. (1987), the random collision model is unrealistic in the case of 

sub-microscale droplets, which are exposed to laminar motion, and hardly ever collide. To account 
for this case, the authors derive an expression for the collision frequency assuming a homogeneous 
distribution of droplets in a uniform rate of strain. A collision is established if the trajectory 
of one of the objects is such that contact occurs within the expected life of the embedding eddy. 
The collision velocity is taken to be the instantaneous value at the point of impact in the 
undisturbed flow. The collision frequency per drop unit volume of the embedding eddy is given 
by (Lewalle et al. 1987): 

Vn 3 
f ( n  + 1, v) = 1.22 ~ (r d (v) + l, + l ) ne [25] 

where nc represents the number of (n + 1) eddies embedded in a unit volume of eddies of size n. 
The collision velocity is 

Vn 
vr = ~ ,  (rd (v) + l, +, ). [26] 

It is instructive to compare the relative merits of the ordered and random collision models. In 
drop--eddy collisions, one of the objects, the eddy is always at least as large as the Kolmogoroff 
microscale. Under these conditions, the random collision model and the uniform rate of strain 
model give similar results for collision frequencies. The random collision model is preferred because 
it is consistent with the coalescence models of Coulaloglou & Tavlarides (1977). Also, the 
mathematical treatment of drop trajectory information in random drop-eddy collisions is 
more tractable. An analysis of drop motion is presented below, based on the random collision 
assumption. 

For collisions between two drops, both much smaller than the embedding eddy, the uniform rate 
of strain seems to be a more accurate representation and is adopted here. These collisions are 
assumed to be partially inelastic, and their contributions to the energy budget are considered. 
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2.3. Interactions 

The objective of this section is to develop a reasonable description of the interaction terms which 
appear in [16]-[18] and to produce a working model which adequately describes the mutual effects 
between the dispersion and turbulence. From the turbulence structure modeled in section 2.1, it 
follows that a drop trapped in an "n eddy" could behave in one of the following ways: 

(a) It may encounter an entrained "(n + 1) eddy", and perhaps, enter its confines. 
(b) It may leave the region of influence of the embedding "n eddy" to enter a larger "(n - 1) 

eddy" by mechanisms which are examined later in this paper. 
(c) It may undergo breakage or coalescence, and hence, alter its identity. 

In (a) and (b), the drop-eddy encounter provides a change in environment for the droplet, for 
at least a short interval of time. During this period, the relative velocity between the drop and its 
surroundings could be substantial. All the while, the new environment retards the droplet motion, 
diminishing the relative velocity and dissipating energy in the process. This energy must stem from 
some point in the cascade itself, thus producing a damping of turbulence. In the ensuing analysis, 
it is presumed that this drol~eddy dissipation phenomenon is responsible for the weakening of the 
energy spectrum. The system can be viewed as a series of dissipative collision-type "events", each 
of brief duration, separated by a quiescent period in which interphase energy dissipation is 
negligible. The interaction time is assumed to be small compared with the time between events and 
the eddy turnover time. This permits each event to proceed uninterrupted by other rapid changes 
in the system. 

Interphase interactions. As observed earlier, in a system consisting of drops and eddies, three 
forms of interaction exist---eddy--eddy, drop-drop and eddy~lrop. The former involves the 
turbulent continuum only, and is, presumably, accounted for by the single-phase cascade terms 
which appear in [16] and [17]. Drop-drop encounters can be classified into coalescence and 
breakage events. An adaptation of the coalescence models of Coulaloglou & Tavlarides (1977) as 
described earlier is used here. Breakage, on the other hand, may occur due to local shear, or due 
to pressure fluctuations in the droplet surface. Both phenomena produce the same result. The latter, 
however, is presumed to occur on d rop~ddy  contact, and is therefore treated as such. 

Of the three interaction forms mentioned above, eddy~lrop phenomena are least understood. 
For this reason, special attention has been paid to them. It is presumed that the energy losses 
sustained do not affect single-phase cascade (eddy-eddy) terms at all. Instead, they appear only 
in the form of additive terms in the energy budget. This approach has a decoupling effect on the 
various interaction types, whose contributions can hence be computed separately. In the following 
section, five such interaction types are postulated, their influence on the cascade equations is 
discussed qualitatively, and the resulting interaction terms are derived. 

Drop-eddy  interactions. The following set of five drop-eddy interactions which can account for 
partially inelastic collisions is postulated: 

(1) drop breakage 
(2) grazing collisions, or drop exit 
(3) drop entrapment 
(4) eddy shattering and 
(5) eddy turnover or dumping. 

Each of these interactions is considered in succession. 
(1) Drop breakage. The drop breakage outcome of drop-"n eddy" impact is assumed to be 

caused by pressure fluctuations on the droplet surface. The change in surface energy due to the 
breakage of a drop of volume v into daughters of volume v' and (v - v') is given by: 

Es = (36n )l/3a[v 2/3 - v '2/3 - (v - v')2/3]. [27] 

Then the number of drops in "n eddies" in the size range [v, v + dr] which break per second per 
unit volume of dispersion, to produce a daughter in the size range [v', (v' + dr')] is given by 

N.(v  ) dvg.(v )[~.(v ' ,  v) dv'], [28] 
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where g.(v) is the breakage frequency of size v drops in "n eddies" and fl.(v', v) dv" is the fraction 
of breaking drops of size v which produce a daughter in the size range [v', (v' + dr')]. Therefore, 
the energy per unit volume per unit time extracted from the flow during breakage events in "n 
eddies" is 

(AEB). ~,v...O. [~,/2 = E. dr '  dv [29] 
J(Vmin)n J(Vmin)n 

where 

E. = (36=)'/3aN.(v)g.(v)fl.(v, v')(v 2/3 - v '2/3 - (v - v ,)l/3) [301 

and E. dv 'dv is the differential surface energy change per unit mass due to drop breakage in "n 
eddies" and (Vmi.). is the minimum volume of drops in "n eddy". 

Drop breakage does not affect the eddy intermittency distribution, but it alters the number 
density of the parent "n eddy". The sink term due to drop breakage in the equation is given by 

(B,)n = --gn(v)N,,(v). [311 

The source term due to drop breakage is 

I 
(Vm.x). 

(B 2). = v. (v ')ft. (v. v')g. (v ')iV. (v ') dv' [32] 
J V  

where v.(v') is the average number of daughter droplets formed during breakage of a drop of 
volume v'. 

Equations [29]-[32] represent the contribution of drop breakage to the two-phase cascade model. 
Breakage functions g,(v), fl~(v, v') and v, are given by [10]-[12]. 

(2-4) Exit, entrapment and eddy shattering. These three collision outcomes are closely related 
and are best discussed simultaneously. If  drop breakage occurs during a drop-"n eddy" collision, 
it is assumed to take place on impact. Consequently, if this event does not occur, the drop enters 
the confines of the eddy. It is then acted upon by a dissipative retarding force, exterted by its new 
environment. If  its entrance kinetic energy is large enough, the resistive forces are insufficient to 
bring it to equilibrium with its new surroundings. Instead, the drop passes through the eddy, loses 
some of its kinetic energy in the process and returns to its original "(n - 1) eddy" environment. 
This occurrence is referred to as an exit event or a grazing collision. If, on the other hand, the drop 
is brought to rest, it remains trapped in the colliding "n eddy". This phenomenon is known as 
entrapment. Finally, if the drop motion disorganizes the eddy sufficiently, the eddy may lose its 
coherence, and hence, its identity. Presumably, the fluid mass remaining will show up as part of 
the parent eddy. The present model assumes that this phenomenon occurs whenever the energy 
dissipated during the interaction is comparable with the turbulent energy contained in the colliding 
"n eddy". This event-type is called eddy shattering. 

Each of the three interaction types has a different effect on the cascade equations. All three events 
result in the dissipation of energy. Hence, the local energy budget must reflect their possible 
occurrence. Exit and entrapment events leave the integrity of the eddy untouched. Since the number 
of eddies in the dispersion remains unaffected by these events, the intermittency equations remain 
unchanged. Shattering on the other hand, actually destroys the colliding eddy. This effect is 
reflected by a sink term in the intermittency equation. Finally, the local population balances are 
affected only by entrapment and shattering. Exit events clearly play no part in these balances since, 
at the termination of the process, the drop returns to the parent environment. Entrapment, on the 
other hand, results in the net movement of the colliding drop from an "(n - I)" parent to an "n 
eddy". The effect of shattering on the drop number distribution is more subtle. The destroyed eddy 
is known to have harbored a population of drops prior to the collision. On disintegration of their 
surroundings, these drops reappear in the environment of the "(n - 1)" parent. The net effect is 
their migration from an "n eddy" to an "(n - 1) eddy". The number balances of both n and (n - I) 
eddies, therefore, reflect entrapment and shattering. 

Among the collision parameters, a probability distribution of drop-eddy collision angles is 
considered, in order to determine the distribution of the relative velocity of collision. The relevant 
frequencies and energies can be calculated exactly for a spherical eddy, and permits a convenient 
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drop velocity 
R = (Vd•t } vector, "~d 

) eddy eddy velocity 

vector,'~e 

Figure 2. Probability density of drop-eddy collision angle. 

mathematical description of the process. These values so calculated are presumed to be good 
estimates for more realistic eddy shapes characterized by a unique length scale. The probability 
distribution can be derived by observing the motion of the center of the drop from the reference 
frame of the eddy. Then the probability that the collision angle lies between 0 and (0 + dO) is 
proportional to the area of the shaded region in figure 2. 

(2~R sin O)(R dO) 1 
g(O) dO - 4rtR 2 - ~ sin 0 dO [33] 

where R is the radius of the sphere. Since the collision occurs in an " ( n -  1)" parent, this 
characteristic speed is assumed to be v, ~. The direction of motion of each species is a random 
variable with a uniform probability density. Then, the relative velocity of collision (figure 3) is 
given by: (o) 

Vr=2V, isin -~ . [341 

The probability that the collision radius will lie between r and r -I- dr is equal to the cross-hatched 
area divided by the eddy cross-section. Therefore 

2 dr 
f ( r )  dr = (Re)e [35] 

eddy  

d rop-eddy  ~ 
relative . . . . . . . . . . . . . . . . . . . . . .  
velocity 

V r 

v d = v n -1 

drop 

Figure 3. Drop-eddy relative velocity. 
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Figure 4. Drop exit and entrapment. 

wheref ( r )  is the probability density function for collision radius r and (Ro), is the radius of the 
"n eddy". 0 uniquely determines the relative velocity, while r represents the radius of contact. 

Following the collision, the drag experienced by the drop is modeled after slow motion of  a solid 
particle in an infinite medium--Stokes Law. 

The path length, 2, of the center of the drop in an exit event from an eddy (figure 4) can be related 
to the radius of  contact r by: 

2 = 2((Re)~ - r2) ~/2. [36] 

It follows that if the drop is brought to rest (with respect to the eddy) within a distance 2, 
entrapment occurs. If not, the result is an exit event (figure 4). If, during the drop motion, the 
energy dissipated exceeds the eddy energy, the result is a shattering event. 

The critical radius, Re, below which the drop stays trapped is related to the maximum stopping 
distance, L, of a particle in Stokes flow by: 

p~={~(,Re)~-L2/4) ~/2 (R~). > L/2 
(R,). <~ L/2 " [37] 

An expression for L can be derived by integration of the particle equation of motion. In the 
reference frame of the continuum, 

4 n  dv  d 
~- rdPd --~ = -- 6~#rdVd, [38] 

from which upon integration 

Vd (9'at)/(2Pdr~) [39] 
Vr 

where # is the viscosity and v d is the drop velocity. Therefore, 

fo L ~o ~ 2pdr~vr [40] L = ds = v~exp(-9#t/2pdr~) dt = 9p 
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In general, the instantaneous distance traveled can be related to the instantaneous velocity by: 

2pdr2d 
L(vd) = ~ ( v r -  vd). [41] 

A second critical radius of  relevance, re, the critical collision radius which distinguishes between 
drop exit and eddy shattering, is that radius above which the drop path is too short to permit 
shattering. Clearly, when the initial kinetic energy of the drop is smaller than the eddy, energy 
scattering does not occur even if al__!l the kinetic energy is dissipated. On the other hand, if the initial 
drop energy is large enough, and the collision radius less than r e, the energy dissipation exceeds 
the eddy energy, which results in eddy destruction. Therefore, the minimum energy that must be 
dissipated for decimation of  the eddy is given by: 

(AE), = pm . [42] 

The kinetic energy lost by the drop as a function of drop velocity is 

E(va) = @ (v 2, - v2). [43] 

At r = re, the path length is just sufficient such that (AE); = E(va). Accordingly, 

Pal__ gd (V2 -- V 2) -- 47Zpm(Re) 3 
2 " r 6 V;,. [44] 

The exit drop velocity, v e, can be expressed in terms of path length from [41] as: 

9/~. 
ve = Vr 2par2a. 

Substituting for 2 from [36], 

[45] 

v~ = vr pdr2 a [46] 

Equations [44] and [46] can be solved for rc to obtain 

2 2 4  (ee)nPmUn~ ~ (re)nPmUn] [ 4 7 ]  
re= (Re) ~ 2Vrpdrd 1-- 1 v~rdPa ] ] 2vrrdpd[ 81/t 2 ~ ~ . 

Clearly, rc does not exist, i.e. shattering is not possible, if [44] can never be satisfied for real r. In 
this ease: 

3 2 (Pa Vd)/2(v~) < (2rc/3)pn,(Re),v,. [483 

Inspection of [37], [40] and [47] indicates that both critical radii depend on vr, which in turn 
depends on the collision angle 0. In other words, given a value for the random variable, 0, the 
collision radius, r, and the drop radius, rd, [37], [40], [47] and [48] determine which event---exit, 
entrapment, or shattering--occurs. A more detailed discussion on the variation of  the critical radii, 
and hence the probabilities of  the outcomes, with the collision angle 0 is presented by Jairazbhoy 
(1989). Figure 5 distinguishes between drop exit and eddy shattering events. 

In summary, the critical quantities re, Rc, 0c and 00 determine active ranges for the random 
variables r and 0, and hence, limits for their integration. Here 0c is the critical angle above which 
scattering is possible and 00 is the angle at which Re falls to zero. A more detailed analysis of the 
effects of the two random variables r and 0, and the drop radius ra on the event outcomes is 
presented elsewhere (Jairazbhoy 1989). 

The influence of  the three event types, described above, on the Cascade equations is examined 
next. 
Energy equation: the energy lost in a single occurrence of an exit event is given by: 

EE - ~ ( v ~  2 = - re), [49] 
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where the exit velocity, re, is a function of the three random variables 0, r and r d and V d is the 
drop volume. Therefore, the total energy lost by "n eddies" per unit volume of dispersion due to 
exit events is 

j,vm~, f('max)"). _,-' Pa Vd(2v2.- 20 v~' (AEE) --- fOfr sinZ , - 2 ) f ( n ,  v) [ 1 - B e(n, v)] 

x g(O)f(r)N(._ i)(v) dr dO dr. [50] 

wheref(n, v) is the collision frequency for drops between n eddies and drops of size v and Br(n, v) 
is the fraction of "n eddy"--drop (of volume v) collisions which result in drop breakage. Similarly, 
the contribution of drop entrapment to the energy equation is given by: 

(AET). = 2(pa Vd)V2._ j sin ~f (n ,  v)[l -- Bf(n, v)]. N._ i(v)g(O)f(r) dr dO dv, [51] 
d (Vmin)n - I 

where (AET), is the energy lost per unit volume by "n eddies" due to entrapment. The energy lost 
per unit volume by "n eddies" due to shattering is: 

(AE~). = ( .... )"-' P=( )" " n.v)[1 - Bf(n,v)] • N ._ , ( v )g (O) f ( r )drdOdv .  [52] 
J(Vmin)n I 

The limits on r and 0 in the above equations must be chosen such that the result of the collision 
for (Vmin)n_ I < / )< ( / )max)n - I  is exit [50], entrapment [51] or shattering [52J--as explained by 
Jairazbhoy (1989). The collision frequency function f (n,  v) is given by [22] and the breakage 
function Br(n, v) is derived in Jairazbhoy (1989) and given as 

Be(n, v )  = e x p  - c . [ 5 3 1  

Here v. is the velocity of the "n-eddy", and vc is the critical velocity of the "n-eddy" which contains 
enough energy to overcome the drop surface energy. 

critical path fo 
shattering 

ve V e 

for drop entrapment 
(hypothetical, since shattering 

OcCUrS before entrapment) 

No shattering region 

I I Eddy- shattering region 

Figure 5. Eddy shattering. 
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Equations [50]-[52] represent the contributions of exit, entrapment and shattering to the energy 
equation. The right hand sides of these equations can be simplified by performing the integration 
over the variables r and 0 analytically (Jairazbhoy 1989). 

Intermittency equation: the only event type which affects the eddy intermittency is eddy shattering. 
The change in interittency per unit time due to such events is given by: 

f (t'rnax)n f (Vmax)n - I 
(aft). = (re).+, (ABe).+, dv - (re). (ABs). dv [54] 

J (Vmin)n ~J (l'min)n - I 

where (Ve) . is the "n eddy" volume and (ABe), represents the number of "n eddies" that shatter 
per unit tie per unit volume of dispersion, and is given by: 

(AB0n = ;o f, U,_,(v)f(n, v)[1- Br(n,v)]g(O)f(r)dr d0 [55] 

where g(O) is the probabiity density function for collision angle 0. 

Drop number balance: the number of drops in "n eddies" of volume between v and v + dv is affected 
by source and sink terms associated with eddy shattering and drop entrapment. 

The net contribution of eddy shattering to the local population balance is given by: 

Fs(v) = N.+, (v) f (n + 1, v ')[l  - Bf(n + 1, v')]N.(v')g (O)f (r) dr dO dr' 
J [Vmin)n + I 

('(~',,,ax). 
--N.(v) I f (n,  v')[1 -- Br(n, v')]N._ t(v')g(O)f(r) dr dO dr'. [56] 

J (Vmin)n 

The net contribution of entrapment to the local population balance is represented by: 

FT(v)=fof, ' N.=,(v) f (n ,v )[ l -Bf (n ,v )]g(O) f ( r )drdO 

- ;o ~ N.(~)f (n + l,v)[l - Br(n + l,~)lg (O)f (r)dr dO. [57] 

Details describing the analytical evaluation of the integrals over r and 0 in [50]-[57] are reported 
elsewhere (Jairazbhoy 1989). 

(5) Eddy turnover or dumping. This interaction is the last of the five postulated eddy~irop 
phenomena. It is different from the others inasmuch as it does not directly involve an eddy-drop 
collision. Since eddies have a limited life span, it is necessary to examine what happens to 
drops trapped within an eddy, when the eddy dies. Clearly, these drops experience a change 
in environment. This clearly causes a momentary relative velocity between the two phases, which 
is subsequently reduced by the action of dissipative forces. This phenomenon is referred to as eddy 
turnover or dumping. The extent to which energy is dissipated during this process, and the ultimate 
location of the entrapped drops, remain to be examined. 

The time scale associated with "n eddies", t, = l,/u, is a reasonable estimate for the local eddy 
turnover time. Also, something must be said about the eddy turnover process. The simplest 
approach would be to assume that eddies are statistical entities, that form and disappear with a 
characteristic frequency. When a new eddy forms as a growing instability, it seems reasonable to 
consider the entrained drop number density to be similar to that of the parent eddy. Care must 
be taken, however, to prohibit entrainment of drops larger than the maximum allowable in the 
daughter eddy. Conversely, the decay of an instability, or disappearance of an eddy, presumably 
results in the deposition of the entrained drops into the parent eddy. Assuming that these processes 
are entirely dissipative, the energy lost by "n eddies" per unit time per unit volume of dispersion 
due to dumping, (AED),, is: 

)"+tv'N.+t(v')dv" + v'N.(v')dv" . [58] (AED). (u.k.) 
(#. 5-'-- # ,  o(,,,.,.~. +, o (,,.,°>. 
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The net contribution of dumping to the population balance is 

FD(V) = u.+ , k.+ , (iV.+, (v) - N'.(v) + u .k . (N' ._ ,  (v) - N.(v)) ,  [59] 

where N'.(v) is introduced to prohibit large drops from entering small eddies and is defined as 

Nn(v) ( ~ n - I  - -  ~ n )  V ~ .  (Vmax)n+ i ,  [ 6 0 ]  

gn(V)= [ 0 ,  V > ( Y m a x ) n +  l . 

Since eddy formation and disappearance are already accounted for by single phase terms in the 
intermittency equation, dumping has no additional effect. 

2.4. Two-phase cascade equations 

The contributions of all five interaction types are introduced into the cascade model to yield the 
following equations: 

du_._.~, = ctk, [u2, l - 2u, + ) u, - 21 /3C(un  _ ~ u .  - 2u ] + 1 )] - -  vk2 un 
dt 

1 
- - -  [(AEE), + (AET), + (Aes)n + (AEB), + (AED)n] [61] 

Pm U. 

dfl.(t_.___)) = ft. v .k .  [log ft. - log(ft. _, 2 ° -3)1 - (Aft). [62] 
dt 

['(Vm~O. 
ON.(v,_~ t) = - g . ( v ) N . ( v ,  t)J v v.(v')fl.(v, v ' )g . (v ' )N. (v ' ,  t) dv" 

f v/2 
+ 2.(v -- v', v ' )h . (v  - v', v ' )N . (v  - v', t )N.(v ' ,  t) dv" 

0 
I (v,,,~ ). - ,' 

- -N.(v ,  t) 2.(v, v ')h.(v,  v ' )N.(v ' ,  t) dv'  + Fs(v) + FT(v) + FD (V). 
.Io 

[63] 

The drop eddy functions (AE~),, (Aft),, and Fi(v) (where i represents an interaction type) are given 
by [29], [30] and [50]-[60]. 

Equations [61]-[63] must be integrated from a specified initial state [19] until the energy 
spectrum, the intermittency spectrum and the drop population reach steady state. The overall drop 
population can be constructed by combining the number densities of drops in all eddy sizes. In 
the companion paper (Jairazbhoy & Tavlarides 1995), a numerical scheme devised to integrate these 
equations is presented and the results analyzed. 

3. CONCLUSIONS 

In this paper, it has been demonstrated that the cascade model can be used as a framework within 
which drop-eddy interactions in two-phase flow can be modeled. The energy budget of the 
turbulent cascade is extended to include drop-eddy and drop-drop terms. An eddy intermittency 
equation is formulated to account for the destructive effects of drop-eddy collisions. A population 
balance equation is written for each eddy size. This balance accounts for drop breakage, drop 
coalescence and all d r o ~ e d d y  events which change the number densities of drops in eddies of 
various sizes. The turbulence itself is viewed as a conglomeration of successively contained eddies, 
and the interactions are initiated primarily by droly-eddy collisions. The effect on the energy budget, 
eddy intermittency and drop populations is predicted by examination of the path of the drop, 
assuming a simple flow field. 

The advantage of the present formulation is that it throws light on the whole energy spectrum. 
The mutual interactions between eddies and drops are likely to be much different if the eddies are 
large rather than small. In other words, large eddies tend to convect drops, while small eddies tend 

IJMF 21/~-J 
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to shear them. Such effects are impossible to describe unless the entire energy spectrum is brought 
into focus. In addition, the role of the dispersed phase in two-phase turbulence is treated in a 
fundamental manner, inasmuch as an attempt is made to visualize the possible outcomes of 
drop-eddy encounters. The disadvantages, on the other hand, lie primarily in the solution of the 
large set of partial integro-differential equations that result, especially in the description of 
convective two-phase flows of practical interest. In the following paper (Jairazbhoy & Tavlarides 
1995), a numerical scheme to effect such a solution, and the accompanying difficulties, are 
discussed. It is also suggested that, with the aid of fast computers, the cascade model may be 
adapted for non-homogeneous two-phase turbulent flows. 
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